Bang, K., Park, S., Yoo, J. Y., Cho, S., 2012. Characterization and expression of attacin, an antibacterial protein-encoding gene, from the beet armyworm, Spodoptera exigua (Hübner) (Insecta: Lepidoptera: Noctuidae)Molecular Biology Reports39(5), 5151–5159. https://doi.org/10.1007/s11033-011-1311-3

Bazon, M. L., Silveira, L. H., Simioni, P. U., Brochetto-Braga, M. R., 2018. Current advances in immunological studies on the Vespidae venom antigen 5: therapeutic and prophylaxis to hypersensitivity responses. Toxins10(8). https://doi.org/10.3390/toxins10080305

Calvo, E., Dao, A., Pham, V. M., Ribeiro, J. M. C., 2007. An insight into the sialome of Anopheles funestus reveals an emerging pattern in Anopheline salivary protein families. Insect Biochemistry and Molecular Biology37(2), 164–175. https://doi.org/10.1016/j.ibmb.2006.11.005

Cao, Z., Yu, Y., Wu, Y., Hao, P., Di, Z., He, Y., Chen, Z., Yang, W., Shen, Z., He, X., Sheng, J., Xu, X., Pan, B., Feng, J., Yang, X., Hong, W., Zhao, W., Li, Z., Huang, K., Li, T., Kong, Y., Liu, H., Jiang, D., Zhang, B., Hu, J., Hu, Y., Wang, B., Dai, J., Yuan, B., Feng, Y., Huang, W., Xing, X., Zhao, G., Li, X., Li, Y., Li, W., 2013. The genome of Mesobuthus martensii reveals a unique adaptation model of arthropods. Nature Communications 4, 2602. https://doi.org/10.1038/ncomms3602

Casale, T. B., Burks, A. W., 2014. Clinical practice. Hymenoptera-sting hypersensitivityThe New England Journal of Medicine370(15), 1432–1439. https://doi.org/10.1056/NEJMcp1302681

Charlab, R., Valenzuela, J. G., Rowton, E. D., Ribeiro, J. M., 1999. Toward an understanding of the biochemical and pharmacological complexity of the saliva of a hematophagous sand fly Lutzomyia longipalpisProceedings of the National Academy of Sciences of the United States of America96(26), 15155–15160. https://doi.org/10.1073/pnas.96.26.15155

Crava, C. M., Jakubowska, A. K., Escriche, B., Herrero, S., Bel, Y., 2015. Dissimilar regulation of antimicrobial proteins in the midgut of Spodoptera exigua larvae challenged with Bacillus thuringiensis toxins or Baculovirus. PLOS ONE10(5), e0125991. https://doi.org/10.1371/journal.pone.0125991

Cura, J.E., Blanzaco, D.P., Brisson, C., Cura, M.A., Cabrol, R., Larrateguy, L., Mendez, C., Sechi, J.C., Silveira, J.S., Theiller, E., Roodt, A.R. de, Vidal, J.C., 2002. Phase I and pharmacokinetics study of crotoxin (cytotoxic PLA2, NSC-624244) in patients with advanced cancer. Clin Cancer Res 8, 1033–1041.

Demain, J. G., Minaei, A. A., Tracy, J. M., 2010. Anaphylaxis and insect allergyCurrent Opinion in Allergy and Clinical Immunology10(4), 318–322. https://doi.org/10.1097/ACI.0b013e32833a6c72

Gibbs, G. M., Roelants, K., O’Bryan, M. K., 2008. The CAP superfamily: Cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins–roles in reproduction, cancer, and immune defense. Endocrine Reviews29(7), 865–897. https://doi.org/10.1210/er.2008-0032

Han, R., Liang, H., Qin, Z., Liu, C., 2014. Crotoxin induces apoptosis and autophagy in human lung carcinoma cells in vitro via activation of the p38MAPK signaling pathway. Acta Pharmacol Sin 35, 1323–1332. https://doi.org/10.1038/aps.2014.62

Hu, Y., Aksoy, S., 2005. An antimicrobial peptide with trypanocidal activity characterized from Glossina morsitans morsitans. Insect Biochemistry and Molecular Biology35(2), 105–115. https://doi.org/10.1016/j.ibmb.2004.10.007

Jridi, I., Catacchio, I., Majdoub, H., Shahbazzadeh, D., El Ayeb, M., Frassanito, M.A., Solimando, A.G., Ribatti, D., Vacca, A., Borchani, L., 2017. The small subunit of Hemilipin2, a new heterodimeric phospholipase A2 from Hemiscorpius lepturus scorpion venom, mediates the antiangiogenic effect of the whole protein. Toxicon 126, 38–46. https://doi.org/10.1016/j.toxicon.2016.12.001

Koh, D. C. I., Armugam, A., Jeyaseelan, K., 2006. Snake venom components and their applications in biomedicine. Cellular and Molecular Life Sciences: CMLS63(24), 3030–3041. https://doi.org/10.1007/s00018-006-6315-0

Kwon, Y. M., Kim, H. J., Kim, Y. I., Kang, Y. J., Lee, I. H., Jin, B. R., … Seo, S. J., 2008. Comparative analysis of two attacin genes from Hyphantria cuneaComparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology151(2), 213–220. https://doi.org/10.1016/j.cbpb.2008.07.002

Lee, M., Bang, K., Kwon, H., Cho, S., 2013. Enhanced antibacterial activity of an attacin-coleoptericin hybrid protein fused with a helical linkerMolecular Biology Reports40(6), 3953–3960. https://doi.org/10.1007/s11033-012-2472-4

Li, M., Al Souhail, Q., Veerapandian, R., Vediyappan, G., Kanost, M., 2019. Investigation of an antifungal peptide, Diapausin, from Manduca sextaThe FASEB Journal33(1_supplement), 800.2-800.2. https://doi.org/10.1096/fasebj.2019.33.1_supplement.800.2

Lynch, V.J., 2007. Inventing an arsenal: adaptive evolution and neofunctionalization of snake venom phospholipase A2 genes. BMC Evolutionary Biology 7, 2. https://doi.org/10.1186/1471-2148-7-2

Ma, R., Mahadevappa, R., Kwok, H.F., 2017. Venom-based peptide therapy: insights into anti-cancer mechanism. Oncotarget 8, 100908–100930. https://doi.org/10.18632/oncotarget.21740

Mans, B. J., Andersen, J. F., Francischetti, I. M. B., Valenzuela, J. G., Schwan, T. G., Pham, V. M., Ribeiro, J. M. C., 2008. Comparative sialomics between hard and soft ticks: Implications for the evolution of blood-feeding behaviorInsect Biochemistry and Molecular Biology38(1), 42–58. https://doi.org/10.1016/j.ibmb.2007.09.003

Martinson, E.O., Mrinalini, Kelkar, Y.D., Chang, C.-H., Werren, J.H., 2017. The evolution of venom by co-option of single copy genes. Curr Biol 27, 2007-2013.e8. https://doi.org/10.1016/j.cub.2017.05.032

Martinson, E.O., Wheeler, D., Wright, J., Mrinalini, A.L., Werren, J.H., 2014. Nasonia vitripennis venom causes targeted gene expression changes in its fly host. Mol Ecol 23, 5918–5930. https://doi.org/10.1111/mec.12967

Muller, S.P., Silva, V.A.O., Silvestrini, A.V.P., de Macedo, L.H., Caetano, G.F., Reis, R.M., Mazzi, M.V., 2018. Crotoxin from Crotalus durissus terrificus venom: In vitro cytotoxic activity of a heterodimeric phospholipase A2 on human cancer-derived cell lines. Toxicon 156, 13–22. https://doi.org/10.1016/j.toxicon.2018.10.306

Mylonakis, E., Podsiadlowski, L., Muhammed, M., Vilcinskas, A., 2016. Diversity, evolution and medical applications of insect antimicrobial peptides. Philosophical Transactions of the Royal Society B: Biological Sciences371(1695). https://doi.org/10.1098/rstb.2015.0290

Rudd, C.J., Viskatis, L.J., Vidal, J.C., Etcheverry, M.A., 1994. In vitro comparison of cytotoxic effects of crotoxin against three human tumors and a normal human epidermal keratinocyte cell line. Invest New Drugs 12, 183–184.

Sanggaard, K.W., Bechsgaard, J.S., Fang, X., Duan, J., Dyrlund, T.F., Gupta, V., Jiang, X., Cheng, L., Fan, D., Feng, Y., Han, L., Huang, Z., Wu, Z., Liao, L., Settepani, V., Thøgersen, I.B., Vanthournout, B., Wang, T., Zhu, Y., Funch, P., Enghild, J.J., Schauser, L., Andersen, S.U., Villesen, P., Schierup, M.H., Bilde, T., Wang, J., 2014. Spider genomes provide insight into composition and evolution of venom and silk. Nature Communications 5, 3765. https://doi.org/10.1038/ncomms4765

Sato, K., Tanaka, H., Saito, Y., Suzuki, K., 2002. Baculovirus-mediated production and antifungal activity of a diapause-specific peptide, Diapausin, of the adult leaf beetle, Gastrophysa atrocyanea (Coleoptera: Chrysomelidae). Journal of Insect Biotechnology and Sericology71(2), 69–77. https://doi.org/10.11416/jibs2001.71.69

Silva, M.A., Lopes, D.S., Teixeira, S.C., Gimenes, S.N.C., Azevedo, F.V.P.V., Polloni, L., Borges, B.C., da Silva, M.S., Barbosa, M.J., Oliveira Júnior, R.J. de, Elias, M.C., da Silva, C.V., Yoneyama, K.A.G., Rodrigues, V. de M., Rodrigues, R.S., 2018. Genotoxic effects of BnSP-6, a Lys-49 phospholipase A2 (PLA2) homologue from Bothrops pauloensis snake venom, on MDA-MB-231 breast cancer cells. Int. J. Biol. Macromol. 118, 311–319. https://doi.org/10.1016/j.ijbiomac.2018.06.082

Suzuki, K., Hiromasa, T., An, Y., 2001. – Significance of specific factors produced throughout diapause in pharate first instar larvae and adults. In D. L. Denlinger, J. M. Giebultowicz, D. S. Saunders (Eds.), Insect Timing: Circadian Rhythmicity to Seasonality (pp. 185–198). https://doi.org/10.1016/B978-044450608-5/50047-7

Tanaka, H., Sato, K., Saito, Y., Yamashita, T., Agoh, M., Okunishi, J., Suzuki, K., 2003. Insect diapause-specific peptide from the leaf beetle has consensus with a putative iridovirus peptidePeptides24(9), 1327–1333. https://doi.org/10.1016/j.peptides.2003.07.021

Wang, J., Qin, X., Zhang, Z., Chen, M., Wang, Y., Gao, B., 2014. Crotoxin suppresses the tumorigenic properties and enhances the antitumor activity of Iressa® (gefinitib) in human lung adenocarcinoma SPCA‑1 cells. Molecular Medicine Reports 10, 3009–3014. https://doi.org/10.3892/mmr.2014.2620

Yi, H.-Y., Chowdhury, M., Huang, Y.-D., Yu, X.-Q., 2014. Insect Antimicrobial Peptides and Their Applications. Appl Microbiol Biotechnol 98, 5807–5822. https://doi.org/10.1007/s00253-014-5792-6

Yonamine, C. M., da Silva, Á. R. de B. P., Magalhães, G. S., 2013. Serine proteases—cloning, expression and potential applications. An Integrated View of the Molecular Recognition and Toxinology – From Analytical Procedures to Biomedical Applicationshttps://doi.org/10.5772/53063

Zhu, S., Peigneur, S., Gao, B., Umetsu, Y., Ohki, S., Tytgat, J., 2014. Experimental conversion of a defensin into a neurotoxin: implications for origin of toxic function. Mol. Biol. Evol. 31, 546–559. https://doi.org/10.1093/molbev/msu038